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Abstract—Automated Program Repair (APR) presents the
promising momentum of releasing developers from the burden of
manual debugging tasks by automatically fixing bugs in various
ways. Recent advances in deep learning inspire many works in
employing deep learning techniques to fixing buggy programs.
However, several challenges remain unaddressed: (1) state-of-the-
art fault localization techniques often require additional artifacts,
such as bug-triggering test cases or bug reports. These artifacts
are not always available in the early development phases; (2)
Sequence-to-Sequence model-based APR often requires addi-
tional contexts with high quality to generate patches. Yet, it is
challenging to identify high-quality contexts that are not common
in programs.

In this paper, with the redundancy assumption in program re-
pair, we propose a dual deep learning-based APR tool, RATCHET,
for localizing (RATCHET-FL) and repairing (RATCHET-PG)
buggy programs. RATCHET-FL localizes buggy statements based
on the feature learned by a simple BiLSTM model from the code,
without any bug-triggering test cases or bug reports. RATCHET-
PG relies on our proposed retrieval augmented transformer
to learn the historical patches and generate patches for fixing
bugs. We evaluate the effectiveness of RATCHET with in-the-lab
DrRepair dataset and in-the-wild dataset RATCHET-DS (curated
in this work). Our experimental results show that RATCHET
outperforms state-of-the-art deep learning approaches on fault
localization with 39.8-96.4% accuracy and patch generation with
18.4-46.4% repair accuracy.

I. INTRODUCTION

Debugging is a routine task in software development and
maintenance, taking significant time and efforts. Especially
with the increasing number of open-source libraries and the
expanding size of software systems, the number of software
defects has been increasing rapidly [1]. However, these defects
are commonly introduced by software developers with no
intention. As reported by LaToza et al. [2], developers spent
50% of their time in discovering and fixing bugs. Furthermore,
in contrast to the quantity of open source projects and the
speed of software iteration, the number of exploited defects
is far from enough, i.e., existing a large number of ”silent”
defects, which have not been exploited [1]. Hence, researchers
have been exploring automated fault localization and program
repair techniques to release developers from the heavy burden
of manual debugging, but it still is far from a settled problem.

Automated program repair (APR) mainly consists of a
two-step process: Localization (localizing the bug) and Auto-
Patch (generating the patches for the localized bugs). In
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the literature, most APR works [3]–[8] employ spectrum-
based fault localization (SBFL) techniques to expose the
bug positions and fix the located bugs through a generate-
and-validate approach. Popular SBFL techniques, such as
Ochiai [9] and Tarantula [10], localize the bug positions by
leveraging the execution traces of negative and positive test
cases. These techniques compute a suspicious score based
on the frequency of each statement in full execution traces
of all test suites. One major limitation of the SBFL tech-
niques is that they highly rely on the bug-triggering test
case(s) (i.e., the failed executed test case(s)). Once the buggy
statement is localized, patches are automatically generated in
three ways: ① the heuristic-based approaches [4], [6]–[8],
that construct and iterate over a search space of syntactic
program modifications with dedicated mutate operators; ② the
constraint-based approaches [11]–[13] that build on constraint
solving to synthesize transformations for patch generation;
and ③ learning-based approaches [14]–[17] which explore
machine learning techniques to boosting program repair by
learning correct code or natural transformation. Heuristic-
based approaches suffer from search space explosion (i.e.,
enumerating more patch candidates) as the search space of
the patches will be widely enlarged due to the increasing
amount of mutation operators [4], [18], while constraint-based
approaches require execution paths to generate constraints, of
which compilation and validation processes take up a huge
amount of time and resources [18], and inadequate constraints
increase the possibility of generating plausible patches [19].
Recently, learning-based approaches [3], [14]–[17] have pre-
sented outstanding performance on fixing bugs by generating
fewer patch candidates with fewer time costs when comparing
against the state-of-the-art heuristic-based and constraint-based
program repair approaches.

The learning-based approaches [3], [14]–[17], [20]–[22] for
the program repair (e.g., the Seq2Seq model [15]) take as
input the buggy function [15], [20] or buggy statements [16],
[17], [21] for the encoder, and decode the extracted features
applied to the patch generation. To contribute to enhancing
the quality of the generated patches, various contexts have
been exploited as the feature supplier of patch generation.
CoCoNut [16] and CuRe [17] engages the surrounding lines
of a bug as its contexts and insert them into a context encoder
for contextual learning. SequenceR [15] considers the buggy
function as the context of the bug and feeds it into the



Seq2Seq model for the patch inference. Such context-based
learning approaches indeed achieved promising performance
on fixing bugs, nevertheless, they simply leverage the LSTM-
based model to encode the local contextual information for
the learning process. Incorporating contexts for bug-related
feature learning could introduce noises and hinder the learning
process. As stated by Tufano et al. [20] and Chen et al. [15],
generating fixes for the completed buggy function can result
in lower accuracy.

In addition, fault localization is the first step of automated
program repair, but CoCoNut [16], SequenceR [15], and
CuRe [17] are evaluated with the perfect fault localization
assumption [23] that the buggy statement can be accurately
localized by a perfect fault localization tool, which however
totally ignores the impact from the fault localization. DrRe-
pair [14] considers the compiler messages to localize error
and generate more accurate patches, which however cannot
provide any hints for localizing functional bugs that deviate
from developers’ intention. DLFix [3] requires a larger number
of test cases with SBFL techniques to proceed with the fault
localization. The state-of-the-art SBFL techniques [24] present
more practical performance on exposing bug positions than
other techniques, but a large number of bugs still cannot
be accurately localized by them [23] and they highly rely
on the bug-trigger test cases that are always unavailable in
the real bug cases [25]. Nevertheless, the accuracy of fault
localization could impact the quality of patches generated by
APR tools [19].

The redundancy assumption of program repair [26], [27]
points out that the buggy code is recurrent in the big codebase
and the related patches can be grafted for similar bugs. Indeed,
code duplication [28] is expected in the ”big code” era and
retrieving similar code has already proved the effectiveness in
many DL4Code tasks (e.g., commit message generation [29],
[30] and code summarization [31]). Based on the redundancy
assumption, we propose combining code retrieval with the
advanced transformer to boost fault localization and patch
generation for program repair.

In this work, we propose a dual deep learning-based pro-
gram repair tool, RATCHET1, with two different deep learn-
ing models: RATCHET Fault Localization model (RATCHET-
FL) and RATCHET Patch Generation model (RATCHET-
PG). RATCHET-FL formulates the localization as a clas-
sification problem to predict the buggy statement via Bi-
Directional Long-Short Term Memory network, without any
bug-triggering test cases or bug reports. With the local-
ized buggy statement, RATCHET-PG employs our proposed
retrieval augmented transformer to generate patches for it.
Specifically, inspired from the recent work [31] on the im-
provement of the retrieval information, we propose to incor-
porate buggy statements with the closest retrieved patches
retrieved from the historical patches for them via the retrieval-
augmented layer in the transformer to contribute the patch

1Ratchet is a Chief Medical Officer of Autobot. It fixes robots, which is a
metaphor for our tool-repairing programs.

generation. This paper makes the following contributions:
• RATCHET-DS, a curated bug-patch pair dataset with 56,974

cases collected from 13 popular open-sourced C/C++
projects, of which bugs and patches are collected systemat-
ically. Dataset RATCHET-DS and SourceCode are publicly
available at https://sites.google.com/view/apr-ratchet.

• RATCHET, a dual deep learning-based program repair tool
by integrating RATCHET-FL with RATCHET-PG. RATCHET
outperforms state-of-the-art learning-based APR tools on
fixing both in-the-lab bugs with 19.5% repair accuracy
and the in-the-wild bugs with 46.4% repair accuracy. And,
RATCHET is not so sensitive to the fault localization setting
for generating correct patches.

• RATCHET-FL, a BiLSTM fault localization model without
using bug-triggering test cases or bug reports. Experimental
results show that RATCHET-FL can effectively identify
buggy statements in the given buggy functions, which
outperforms the state-of-the-art retrieval/learning-based ap-
proaches with the Acc@Top1, Acc@Top3, and Acc@Top5
metrics at 39.8-96.4% for two datasets.

• RATCHET-PG, a novel Retrieval Augmented Transformer
model with the retrieval-augmented layer to integrate the
closest retrieved patches with the buggy statements to gen-
erate correct patches. With the closest retrieved patches,
RATCHET-PG can generate correct patches for more (16-
236) bugs.

II. USAGE SCENARIO AND PROBLEM FORMULATION

In this section, we describe the usage scenario of RATCHET
and formalize its fault localization and patch generation task.

A. Usage Scenario

RATCHET incorporates the fault localization and patch gen-
eration into a unified framework. It treats the fault localization
as a multi-classification problem to predict the bug position
with a well-trained LSTM model, which is different from the
state-of-the-art program repair tools that rely on the existing
fault localization techniques [3]–[5], [12], [20], [21] or build
on the perfect fault localization assumption [3], [15]–[17].
RATCHET takes as input the buggy function to predict the
exact buggy statement. The buggy function is accessible to
off-the-shelf fault localization tools [32], [33]. To simplify the
complexity of program repair, followed by other auto-patching
works [3], [15]–[17], [21], RATCHET focuses on the buggy
functions with the single buggy statement and generates the
patches for them.

B. Problem Formulation

To simplify the framework of RATCHET, we formalize two
sequential tasks: fault localization (RATCHET-FL) and patch
generation (RATCHET-PG). For RATCHET-FL, given a buggy
function c where c = {s1, s2, ..., sn} and n is the total lines of
c, we aim to find the buggy statement sl via predicting the line
number l by localization function floc, l = floc(c), l ∈ [1, n].
For RATCHET-PG, when buggy statement sl is localized, the
generation function fgen is used to produce the patch statement

https://sites.google.com/view/apr-ratchet
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Fig. 1: Overview of RATCHET.

sp = fgen(sl). We tackle the two tasks by devising two neural
networks to approximate floc and fgen for the solving.

III. APPROACH

The overall framework of RATCHET is illustrated in Fig. 1,
which consists of three phases: ① Training ana RATCHET-
FL model, which is applied to localize which statement is
faulty; ② Training an RATCHET-PG model, which is used
to generate the patch candidates for the faulty statement; ③
Inference, when a buggy function is given, RATCHET first uses
RATCHET-FL to localize the bug position and uses RATCHET-
PG to generate the patch.

As illustrated by Fig. 1, both the fault localization model
RATCHET-FL and the patch generation model RATCHET-PG
of RATCHET are first well-trained with the buggy code and
patched code from collected human-written patches. Given a
dataset D = {f = (c, l, p)|c ∈ C, l ∈ Lc, p ∈ Pc} where c is
the buggy function in the buggy-function set C, RATCHET
first leverages its fault localization model RATCHET-FL to
localize the bug position by predicting the line number l of the
buggy statement sl in the buggy function c. With the buggy
statement sl identified by RATCHET-FL, the patch generation
model RATCHET-PG of RATCHET generates the patch for
it. RATCHET-PG is inspired by the recent works [30], [31],
[34], we augment the buggy statement sl by retrieving the
most similar patch from a patch dataset D′ to enhance the
generation process.

A. RATCHET-FL: Fault Localization Model

Inspired by the redundancy assumption [26], [35] that the
buggy code could be recurrent in programs, we propose to train
the fault localization model RATCHET-FL with bugs collected
from real-world projects, to predict the buggy statement of a
given bug. The fault localization model RATCHET-FL takes as
input a buggy function c = {s1, s2, ..., sn} to locate the single
buggy statement sl (l ∈ [1, n]) by predicting the line number
l with the input c i.e., l = floc(c), which is formulated as
a multi-classification task. Fig. 2 overviews the architecture
of RATCHET-FL, which consists of two sequential layers:
Embedding Layer and Feature Learning Layer
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return 0;

}
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Fig. 2: Architecture of RATCHET-FL model.

1) Embedding Layer: An embedding layer Embed em-
beds code tokens into the unique numeric vector represen-
tations learned with the basic semantic information among
tokens during the training phase. Code identifiers are named
by developers with the combinations of natural language word-
s/letters to represent the specific notion [36]. Concrete string
literals and number literals are used to convey the specific
values in code. The embedding of identifiers and literals will
sharply increase the redundancy of vocabularies and noise the
feature learning [37]–[39]. Thus, to address this challenge, we
employ the camel-case and underscore naming convention to
split code identifiers (e.g., the function name “getPacket” is
split into two separated tokens: “get” and “packet”), and ab-
stract string and number literals into placeholders “STRING”
and “INT”, respectively. It is commonly used in source code
learning [40], [41] and learning-based APR [14], [16] to
reduce the vocabulary size. For ∀si ∈ c, si = {t1, t2, ..., tm}
(m is the number of tokens t in the i-th statement of the
function c), the embedding layer can be represented with the
following equation:

X = Embed(t1, t2, ..., tm) (1)

where xk ∈ X is the k-th token representation and X ∈
Rm×d, d is the dimension length.

2) Feature Learning Layer: ∀xk ∈ X, we employ Bi-
Directional LSTM (BiLSTM) [42] to learn the statement-level
representation rsi , which can be expressed as follows:

h1,h2, ...,hm = BiLSTM(x1,x2, ...,xm)

rsi = [h→m ;h←1 ]
(2)

With the learnt statement-level representations R =
{rs1 , rs1 , ..., rsn} for the buggy function, we use softmax
with two fully connected layers to give the probability of
each statement that would be faulty. The cross-entropy loss
function is selected for the learning process since we model
this problem as a multi-class classification task.

B. RATCHET-PG: Retrieval Augmented Transformer Model of
Patch Generation

In the community of deep learning-based tasks, the latest
works [30], [31], [34], [43], [44] have proved that retrieval
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techniques can yield competitive even better performance than
the pure generation approaches (e.g., RNNs in code-to-text
generation tasks like source code summarization [31] and
commit message generation [30], [34]). We propose to explore
the retrieval technique with deep learning for automated patch
generation. In our preliminary study, we calculated the BLEU-
4 score (a metric to measure the text similarity between
the source and target input) between the closest retrieved
patched statement and the exact patch of a buggy statement.
The BLEU-4 score of retrieval augmented transformer is
0.6542 which is higher than the score (0.5547) of an LSTM-
based Seq2Seq model. This study motivates us to design our
retrieval-based patch generation model, RATCHET-PG, with
two parts: ❶ retrieving the similar patch for the buggy state-
ment and ❷ combining the retrieved patch into the transformer
to generate the fixed patches (cf. CRP Retrieval and Patch
Generation illustrated in Fig. 1).

1) Retrieving: For any single line buggy statement sl in
the buggy function c in the dataset D, RATCHET aims to
retrieve the closest retrieved patch (CRP) from the dataset D′,
a specialized dataset composed of all possible patches. For
simplification, we follow Liu et al’s workaround [31] to use
the patched statements in the training set as D′ for RATCHET.
The retrieving process can be formulated as below:

p′ = argmaxp′∈D′score(sl, p
′) (3)

where p′ represents the CRP retrieved from D′, and p′ ̸= sl.
argmax is used to select the p′ that is more similar to sl than
other patches in D′. In particular, we employ Lucene [45] to
compute similarities between sl and all patches in D′. The
similarity score score(sl, p

′) can be computed as below:

score(sl, p
′) = coord(sl, p

′) + qb(sl) + sim(sl, p
′) + db(p′)

(4)

where the function coord(∗) computes the score of overlap-
ping query terms, qb(∗) and db(∗) refers to the query-boost
factor and document-boost factor of Lucene, and sim(∗) rep-
resents the cosine similarity between sl and p′. Boost factors
can be specified for the concrete documents and query terms,

thus the concrete documents or terms can have higher weights.
We use default values (1) for query-boost and document-boost
in our retrieval approach.

2) Retrieval-Augmented Transformer: The patch generation
model RATCHET-PG takes as input the buggy statement sl
and generates the corresponding patch sp by considering the
closest retrieved patch p′, the patch generation of RATCHET-
PG can be expressed as sp = fgen(sl, p

′). Fig. 3 shows the
overall architecture of RATCHET-PG, which consists of three
parts: Retrieval-Augmentation Layer, Transformer Encoder
and Transformer Decoder.

Retrieval-Augmentation Layer: Similar to RATCHET-FL,
we embed the buggy statement sl and its CRP p′ into the
vector representations using an embedding layer. Before that,
we employ the same pre-processing method to split code
identifiers. We then employ an attention layer to learn the
attention vector A to compute the relevance between sl and
p′. For sl = {t1, t2, ..., ti}, p′ = {t̂1, t̂2, ..., t̂j} where i and
j are the total number of sub-tokens in sl and p′, X and X̂
are the embedded vectors of sl and p′ (cf. equation (1)), the
attention matrix A can be expressed as below:

X = Embed(t1, t2, ..., ti)

X̂ = Embed(t̂1, t̂2, ..., t̂j)

M = ReLU(WQX)× ReLU(WRX̂T )

A = softmax(M)

(5)

where WQ ∈ Rd×d and WR ∈ Rd×d are learnable weights
and ReLU is the rectified linear unit [46]. We multiply the
attention matrix A with the retrieved patch features and add
it to the original buggy features, which can be expressed as
below:

Z = X +AX̂ (6)
where Z ∈ Ri×d represents the final representations of sl, i
is the total token length of the buggy statement and d is the
dimension length. Then we use a Transformer to proceed with
the patch generation.

Transformer Encoder: The encoder takes as the input Z
(the output of the Retrieval-Augmentation Layer) added with
the positional encoding for learning. It is composed of a stack
of N identical layers and each layer has two sub-layers. The
first sub-layer is a multi-head attention layer and the second
one is a fully connected feed-forward network. The residual
connection followed by the layer normalization is used. The
output of each sub-layer can be expressed as LayerNorm(x+
Sublayer(x)).

The multi-head attention layer uses different head h to at-
tend to information from representation subspaces at different
positions. Each head employs scaled dot-product attention,
which can be computed as below:

Attention(Q,K,V ) = Softmax(
QKT

√
dk

)V (7)

where Q, K, and V represent the key, values, and queries,
respectively. Multi-head attention representation can be com-



puted by concatenating the results of scaled dot-product atten-
tion as below:

MultiHead(Q,K,V ) = Concat(headi, ...,headh)W
O

headi = Attention(QWQ
i ,KWK

i ,V WV
i )

(8)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , W V
i ∈ Rd×dv and

WO ∈ Rhdv×d are model parameters and dk = dv = d/h.
The feed-forward network sub-layer consists of multiple linear
transformation and can be expressed as below:

FFN(x) = max(0,xW 1 + b1)W 2 + b2 (9)

where W 1, W 2, b1, and b2 are weights and bias of the linear
transformations.

Transformer Decoder: The decoder is composed of a stack
of N identical layers. Different from the encoder layer, the
decoder layer includes a third sub-layer that computes multi-
head attention over the final output of the encoder layers. In the
third multi-head attention sub-layer of the decoder, it uses the
output of the encoder layers as K and V , while Q is the output
from the previous decoder layer. Similar to the transformer
encoder, the decoder employs the same residual connection
layer as the encoder. Finally, the last layer of the decoder
outputs a matrix. We then compute the probability of tokens
by using a linear layer with softmax to generate the probability
of each token, which can be expressed as below:

P(i) = softmax(HW ) (10)

where H ∈ Rl×d, W ∈ Rd×lvocab , l is the input sequence
length and lvocab is the total vocabulary length.

C. Inference in Bug Fixing Pipeline

After the RATCHET-FL and RATCHET-PG are trained with
the collected dataset, RATCHET can be used to infer patches
in a normal bug fixing pipeline. For a given buggy function
c, it is first fed into the fault localization model RATCHET-FL
to compute the suspicious score for each statement and rank
them with the scores. Specifically, for each statement si in c
where 1 < i ≤ n and n is number of statements, RATCHET-
FL computes the suspicious score for each statement, and
sorts statements with the scores to return the top-k suspicious
statements, which is defined as Ssus = {ssus1 , ssus2 , ..., ssusk }.

For each suspicious statement ssusi ∈ Ssus, RATCHET
employs Lucene to search the closest retrieval patch p′i among
all patches in the training set D and generates k patch
candidates using the patch generation model RATCHET-PG,
sp = fgen(s

sus
i , p′i). Finally, we can get a set of patch can-

didates Sp = {s(p,1), s(p,2), ..., s(p,k)} for the buggy function
c.

IV. EXPERIMENTAL SETUP

In this section, we first present the data preparation, list the
selected baselines to compare with, and present the evaluation
metrics, as well as provide the experimental settings.

TABLE I: Information of projects building RATCHET-DS.
Project # Fix buggy Functions Application Type

libxml2 285 Parser
tcpdump 155 Packet Analyzer
ImageMagick 23 Image Software
cURL 300 Networking/Data Transfer
Glibc 482 C Standard Library
openssl 662 Protocol
Asterisk 931 Communication Toolkit
PostgreSQL 1452 Database
Qemu 3422 Emulator
Wireshark 1196 Network/Packet Analyzer
FFmpeg 697 Multimedia Library
php-src 421 PHP Interpreter
Linux 33549 Operating System

A. Data Preparation

Existing benchmarks such as DeepFix dataset [21] and
CodeFlaws [47] often have flaws in their design and quantity.
The dataset of DeepFix consists of student programs with
simple errors, such as replacing ";" with ",", and the
number of tokens is far less than in real-world applications,
which are unrealistic for in-the-wild programs. CodeFlaws
has 3,902 defects, which is higher than other datasets (DBG-
Bench [48], IntroClass [49], ManyBugs [49]). Nevertheless,
the small amount of data is still a big challenge for deep
learning approaches. Therefore, we curate a large benchmark
RATCHET-DS from real-world projects that contain bug-patch
pairs.

We selected 13 C/C++ open-source projects (shown in
Table I) with two criteria: 1) Each project contains sufficient
commits (from 5,058 to 951,181) that allow us to collect
various data. 2) These projects range from a wide range of
functionalities that provides our model data from different
domains instead of focusing on a single area.

We crawled all the commits of the projects at October 2023,
and employed a keyword filtering process [35], [50], [51] to
extract bug-fixing commits by checking whether the message
of a commit contains one of the bug-fixing related keywords
(e.g., fix, solve, repair, bug, issue, problem, error, fault,
vulnerable, CVE, exploit ) After collecting the patches, we
extract their functions and the bug-patch pairs, the patches with
more than one-line changes are excluded from our dataset.
Eventually, we curated the RATCHET-DS with 56,974 buggy
functions with associated patches. In term of the multiple
commits regarding one patch, we only collected programs that
only required one commit, i.e., the buggy function before the
fix commit and the patched function after the fix commit.

In our experiments, we randomly split the RATCHET-DS
into three sets with 80%, 10%, and 10% to build a training
set, a validation set, and a testing set.

To assess the effectiveness of RATCHET on fixing bugs
and the benchmark-overfitting problem [52], RATCHET is also
evaluated with the DrRepair Dataset [14] released in the
literature. However, the DrRepair dataset cannot be directly
used by RATCHET because of its collecting criteria and its
design, we curate it by the following steps: 1) We randomly



TABLE II: Statistics of Dataset.
Dataset Total Training set Validation set Testing set

RATCHET-DS 56,974 45,575 5,695 5,704
DrRepair 57,344 45,875 5,734 5,735

selected two single-line bug-patch pairs for each program to
satisfy our scenario; 2) We remove the duplicated pairs to
avoid over-fitting and redundancy [53]. A summary of the
RATCHET-DS and DrRepair dataset are shown in Table II.

B. Evaluation Baselines
We evaluate RATCHET in terms of the effectiveness of Fault

Localization and Patch Generation. Thus, we compare the
performance of RATCHET with two kinds of baselines against
the state-of-the-art.

1) Baselines for Fault Localization: We select the follow-
ing baselines for the comparison of fault localization.
Locus [54] employs the Vector Space Model (VSM) to locate
bugs among their source code. Code Entity Model and Natural
Language Model are used to embed the tokens and compute
the similarity score between the bug reports and the code
elements. We implemented a VSM model based on their
approaches as Locus is not publicly available.
iFixR [25] employs TF-IDF with cosine similarity to locate the
suspicious statements within the source file. Both Locus and
iFixR employ information retrieval techniques in localizing
faults in source code. Locus and iFixR are the two state-
of-the-art retrieval-based fault localization techniques without
considering the bug-triggering test cases. We thus select them
as the two baselines for fault localization. In the replication
of Locus and iFixR, we replace bug reports with commit
messages as bug report is not available for all patches.
Transformer [55], based on the RATCHET-FL which is a
classification task, we only employ the Transformer Encoder
part to replace the BiLSTM in RATCHET-FL, assess the
contribution of the Transformer, fairly comparing BiLSTM
model from RATCHET-FL, on localizing fault positions.

Two state-of-the-art learning-based fault localization tech-
niques (DeepFL [56] and DeepRL4FL [57]) are not considered
as the baselines in this work since both of them leverage the
test cases for the feature learning of fault localization.

2) Baselines for Patch Generation: We select the following
baselines for the comparison of patch generation.
DeepFix [21] employs a Seq2Seq approach to generate
patches for C/C++ programs. It utilizes LSTM networks to
generate fixes based on each line of code in the program.
We replicate it by implementing an LSTM-based seq2seq for
generating single line patches with this baseline. We set our
LSTM hidden dimension as 128 for this baseline.
SequenceR [15] uses Seq2Seq and Copy Mechanism to handle
Out-of-Vocabulary words. It input the whole buggy function
to generate a fixed line for the buggy function.
DrRepair [14] employs LSTM and GNN to capture the long-
range dependencies that exist between the error location and
the buggy statements. Then it generates the correct fix based
on the localized buggy statements.

TABLE III: Results of Fault Localization with Acc@TopK

Methods RATCHET-DS DrRepair
Top1 Top3 Top5 Top1 Top3 Top5

Locus 6.89 21.48 45.04 5.61 23.96 45.67
iFixR 7.21 22.05 44.3 5.72 23.87 46.19
DrRepair 35.85 66.15 80.29 55 75.97 87.77
Transformer 34.62 62.52 76.14 79.74 89.36 94.14

RATCHET-FL 39.83 67.36 80.75 88.21 93.76 96.43

These three APR tools are state-of-the-art learning-based
approaches, which are selected as the baselines in this study.
DLFix [3] only works for Java programs. CoCoNut [16], and
CuRe [17] are not replicable due to the limitation of their
source code2. Thus, the three state-of-the-art learning-based
APR tools are not presented in the comparison.
C. Evaluation Metrics

We employ Acc@TopK as the metric for the fault localiza-
tion model, and BLEU-4 and RAcc for the patch generation
model, respectively.
Acc@TopK Following existing works [54], [58] for the fault
localization, we selected Acc@TopK as the metric. Specifi-
cally, given a set of localized suspicious statements Ssus =
{ssus1 , ssus2 , ..., ssusk }, if the buggy statement sl is within Ssus,
it is located.

Acc@TopK =
1

n

n∑
i=1

δ(FRanki ≤ k) (11)

where n is the total samples in the dataset, δ is the function
that returns 1 if the input is true, otherwise returns 0. FRank
is the rank of the first hit result for the buggy statement sl in
the buggy function. In this work, we select k as 1, 3, 5. A
higher Acc@TopK value indicates the better precision of fault
localization.
BLEU-4 BLEU score [59] is a popular metric for NLP
and source-code translation tasks [31]. It is used to evaluate
the performance by computing text similarity between the
output with the ground truth. We select BLEU-4 that employs
four-gram in computing BLEU score to assess the similarity
between the patches generated by APR tools and the ground
truth. A higher BLEU-4 score indicates that the generated
outputs are more similar to the ground truth.
Repair Accuracy (RAcc) As previously mentioned in Sec-
tion III-A and Section III-B, our model outputs k plausible
patches Sp. To assess the performance of generating patches
of RATCHET, we further check whether the patch within Sp is
identical to the ground-truth patch, and assess to what extent
accurate patches can be generated by RATCHET. We define
the RAcc as below:

RAcc =
1

n

n∑
i=1

δ(Hiti) (12)

where δ is the function that returns 1 if the input is true,
otherwise, returns 0. Hit is the function to express whether
y ∈ Sp, where y is the ground-truth.

2https://github.com/lin-tan/CURE/issues/4



D. Experimental Settings

In the fault localization model, we employ a 2-layer BiL-
STM and set word embedding size and LSTM hidden size
as 128. The dropout [60] is set to 0.3 and the learning rate
as 0.001. The batch size is 16 with Adam [60] optimizer.
For the patch generation model, we employ Transformer-
based model with a dimension size of 128 and set its feed-
forward layer dimension as 128. We use a dropout of 0.2
for its positional encoding and transformer layer dropout for
better performance. We use a 4-layer transformer encoder
and decoder to encode and generate the output sequences.
Furthermore, we use 4 transformer heads for our multi-head
attention. Similarly, Adam [61] is used as our optimizer. We
trained our models using the training set, and tune them
with the validation set. The testing set is used to evaluate
the performance of our model. For both RATCHET-FL and
RATCHET-PG, we use patience of 10 epochs and conduct
our experiment on 3 Nvidia-Tesla-V100 graphic cards. The
experiments on RATCHET-PG and RATCHET-FL took an
average of 7 hours and 11 minutes in training respectively.

V. EVALUATION AND RESULTS

In this work, we evaluate our approach by comparing
against the baselines with the two datasets, RATCHET-DS, and
DrRepair Dataset. We aim to answer the following research
questions:
• RQ1: To what extent real-world bugs can be accurately

localized by RATCHET-FL?
• RQ2: Can RATCHET-PG generate correct patches for the

real-world bugs localizaed by RATCHET-FL?
• RQ3: Would the patch generation ability of RATCHET-PG

be affected by different retrieved contexts?
• RQ4: Is RATCHET sensitive to the fault localization setting

for fixing bugs?

A. RQ1: Performance of RATCHET-FL on Fault Localization

We evaluate the performance of RATCHET-FL with the
two datasets (RATCHET-DS and DrRepair dataset) and com-
pare its performance against four different baselines. The
corresponding results are shown in Table III. For a clear
understanding of the fault localization performance, Fig. 4
presents the distribution on code lines of buggy functions
in the two datasets. SBFL techniques are not considered in
the comparative experiment due to the lack of bug-triggering
test cases in both datasets. Comparing with the two infor-
mation retrieval approaches (Locus and iFixR), RATCHET-
FL outperforms them with more 32.6-45.9 percentage points
in the RATCHET-DS and with more 50.2-82.6 percentage
points in DrRepair dataset at the Acc@Top1, Acc@Top3,
and Acc@Top5 metrics. The low performance of Locus and
iFixR might be caused by the different retrieval indexes. The
original Locus and iFixR employ bug reports for localization.
However, it is infeasible to identify bug reports for a massive
dataset. Therefore, we substitute the bug reports with commit
messages. Actually, many bugs are not associated with any
bug reports [56]. Nevertheless, unlike other fault localization

DrRepair

DrRepair Test

Ratchet−DS

Ratchet−DS Test

0 10 20 30 40 50
# of code lines

Fig. 4: Distribution on the code lines of buggy functions.

tools [25], [56], [57], RATCHET-FL does not require any bug
reports or bug-triggering test cases, which allows RATCHET-
FL to locate faults at the early software development stage.

Comparing with two learning-based baselines of fault lo-
calization, RATCHET-FL achieves higher accuracy at the three
metrics after evaluating them on RATCHET-DS and DrRepair
Dataset. It implies that the simple bi-directional LSTM (BiL-
STM) model of RATCHET-FL outperforms the DrRepair and
Transformer Encoder for fault localization. BiLSTM model of
RATCHET-FL can effectively capture the feature from source
code for fault localization, although DrRepair leverages the
combination of LSTM and GNN to expose bug position with
the source code and compiling message. Furthermore, it is not
so feasible to expect compiler messages of real-world bugs
that could take hours to compile the whole big program for a
single bug, especially in deep-learning approaches.

Notably, RATCHET-FL performs better fault localization in
the DrRepair dataset than the RATCHET-DS, with an increase
of 48.4% in Accuracy@Top1, 26.4% in Accuracy@Top3 and
15.7% in Accuracy@Top5. DrRepair dataset consists of the
bugs in student programs and their mutation, which are
much simpler than the real-world bugs in the RATCHET-DS.
RATCHET-DS is curated with 56,974 functions from real-
world programs, which shows a higher diversity than bugs
from student programs. Localizing positions for in-the-lab
bugs poses fewer challenges than in-the-wild ones.

✍ ▶RQ1◀ The simple BiLSTM model-based RATCHET-
FL achieves promising performance on localizing positions
of in-the-lab and in-the-wild bugs without considering the
bug reports and bug-triggering test cases, which outper-
forms state-of-the-art retrieval based and learning-based ap-
proaches. Note that the performance of fault localization for
in-the-lab bugs might not be so practical for real-world bugs.

B. RQ2: Performance of RATCHET on Program Repair

We assess the program repair performance of RATCHET and
compare it with three deep learning baselines. DeepFix [21]
and SequenceR [15] requires perfect fault localization set-
ting. Here the perfect means that the location of the buggy
statement is known. To avoid the bias from the different fault
localization settings, we employ RATCHET-FL to localize the
bug positions for DeepFix and SequenceR before generating
the patches. DrRepair encompasses both fault localization and



TABLE IV: Results of Automated Repair.

Methods RATCHET-DS DrRepair Dataset
BLEU-4 RAcc BLEU-4 RAcc

RATCHET-FL +DeepFix 15.51 7.55 24.18 37.03
RATCHET-FL +SequenceR 6.42 4.92 7.64 18.30
DrRepair 0.04 0.02 11.01 21.19

No FL + RATCHET-PG 19.38 2.51 19.10 1.29
Perfect FL + RATCHET-PG 65.73 19.71 85.73 46.56
RATCHET 18.43 19.51 25.52 46.38

patch generation into one deep learning model, thus its fault
localization is unchanged in this experiment.

Table IV shows the experimental results (the higher met-
ric values, the better performance, cf. Section IV-C) of re-
pairing bugs. DeepFix and DrRepair achieve overwhelming
performance on the DrRepair dataset than the RATCHET-
DS. The two learning-based APR tools were inspired by the
students’ programs, were proposed and evaluated on the in-
the-lab dataset (e.g., bugs from students’ programs in DrRe-
pair dataset). It infers that building the learning-based ARP
models from the in-the-lab dataset could be impractical for
solving real-world bugs. RATCHET outperforms all of the
three learning-based APR baselines at generating patches for
bugs in both RATCHET-DS and DrRepair dataset. RATCHET
also achieves better results on generating patches for in-
the-lab bugs than in-the-wild ones, which is consistent with
the performance of fault localization (cf. Section V-A) since
the bugs in students’ programs from DrRepair dataset are
much simpler than real-world bugs. We infer that the program
repair performance of RATCHET might be benefited from our
proposed retrieval-based patch generation model that allows
the transformer to generate better patches by learning on
correct code sequences. And the retrieval contexts allow the
generation attends to tokens that are not within their inputs.

✍ ▶RQ2◀ RATCHET is effective in generating patches for
in-the-lab and in-the-wild bugs, which outperforms the three
state-of-the-art learning-based APR baselines.

C. RQ3: Impact of Retrieval Contexts on RATCHET-PG

Our proposed retrieval-augmented transformer model learns
from correct patches, which contributes RATCHET to fix more
bugs than the state-of-the-art learning-based APR baselines as
observed from RQ2. As the default configuration, we selected
CRP as the retrieval context. In this section, we investigate
the impact of different retrieval contexts on the generation of
patches. Specifically, we selected four different retrieval con-
texts and evaluate their performances: Closest Retrieval Buggy
Line (CRBL), Closest Retrieval Buggy Function (CRBF),
Closest Retrieval Patch Function (CRPF), and one experiment
without any context (w/o C).

The experimental results are presented in Table V. Com-
paring on the BLEU-4, RATCHET-PG with the CRP context
outperforms other context settings on both RATCHET-DS

TABLE V: Results of patch generation with various contexts.

Context RATCHET-DS DrRepair Dataset
BLEU-4 RAcc (Num) BLEU-4 RAcc (Num)

w/o C 0.1815 0.1832 (1045) 0.2533 0.4397 (2522)
CRBL 0.1846 0.1921 (1096) 0.2509 0.4333 (2485)
CRBF 0.1737 0.1649 (941) 0.2480 0.4186 (2401)
CRPF 0.1821 0.1823 (1040) 0.2501 0.4292 (2462)
CRP 0.1843 0.1949 (1112) 0.2552 0.4598 (2637)

∗“(Num)” denotes the number of bugs fixed by RATCHET-PG
with the corresponding context setting.

(except CRBL3) and DrRepair Dataset. Buggy statements and
functions are incorrect, which results in the RATCHET-PG
model learns from negative examples for patch generation.
We observe that using closest buggy or patch functions as
the contexts can negatively impact the patch generation of
RATCHET-PG since the two kinds of contexts contain more
tokens than CRP. On average, there are 13 tokens on the
line-level contexts, whereas there are 122 tokens on the
function-level contexts. The sharply increased tokens cause
a long-range dependency problem and could result in the
model focusing on the wrong information. The CRBF context
shows the worst performance among all contexts. We infer
that the longer sequence of function-level contexts leads to
the decrements of CRPF context against the CRP context.
Intuitively, learning from closest retrieval patches boosts the
generation model to generate syntactically correct patches. Our
qualitative analysis in Section VI-A further shows that the
RATCHET-PG model can alleviate the missing token problem
by finding and attending to tokens that do not exist in the input
source code.

✍ ▶RQ3◀ The context of closest retrieval patches can
contribute to generating correct patches for bugs. Such
contribution is not so positive for the context from the closest
retrieval buggy/patch functions, since long sequences of
function-level contexts are not as effective as the statement-
level contexts for learning correct patches to generate useful
and effective patches.

D. RQ4: Significance of Fault Localization.

As reported by Liu et al. [23], fault localization setting
has a direct impact on the performance of patching for APR
tools. In this section, we investigate the impact of fault
localization on repairing bugs for RATCHET. Specifically, we
train a model with buggy functions instead of buggy statements
and aim to generate patches based on buggy functions (i.e.,
without fault localization (No FL) in Table VI). We proceed
a perfect fault localization setting for RATCHET-PG the same
as CoCoNut [16], CuRE [17], and SequenceR [15].

Table VI presents the bug-fixing results of RATCHET-PG
with different fault localization settings. With the perfect fault
localization setting, RATCHET-PG achieves the best perfor-
mance on generating patches, which outperforms RATCHET-

3This implies that the learning model generates patches with higher
similarity, but cannot ensure the correctness of the generated patches.



TABLE VI: Impact of Fault Localization on Program Repair.
Fault Localization (FL)
Settings

RATCHET-DS DrRepair Dataset
BLEU-4 RAcc BLEU-4 RAcc

No FL + RATCHET-PG 19.38 2.51 19.10 1.29
Perfect FL + RATCHET-PG 65.73 19.71 85.73 46.56
RATCHET 18.57 19.21 25.52 46.38

Fixed/Buggy Function(Ground Truth)

static guint fIAmRequest (tvbuff_t *tvb, proto_tree *tree, 
guint offset)
{

offset = fApplicationTypes (tvb, tree, offset, "BACnet 
Object Identifier: ");

offset = fApplicationTypes (tvb, tree, offset, 
"Maximum ADPU Length Accepted: ");

offset = fApplicationTypesEnumerated (tvb, tree, 
offset,"Segmentation Supported: ", BACnetSegmentation);
- return fVendorIdentifier (tvb, tree, offset);
+ return fVendorIdentifier (tvb, pinfo, tree, offset);
}

CRP: return faddress(tvb, pinfo, tree, offset);

DeepFix: return fVendor.((tvb, tvb, tree, offset);

Ratchet: return fVendorIdentifier (tvb, pinfo, tree, offset);

Fig. 5: Ground-truth and generated patches for bug Wire-
shark:809fb76.

PG with “No Localization” and normal fault localization
settings. It is consistent with APR tools studied in the lit-
erature [19]. On the other hand, although the BLEU-4 values
of RATCHET are not as good as the perfect fault localization
setting for RATCHET-PG, its RAcc values on the two datasets
are just a bit lower than the perfect fault localization setting.
The results indicate that RATCHET is not so sensitive to the
fault localization setting for generating correct patches.

✍ ▶RQ4◀ Different fault localization settings can impact
the performance of RATCHET-PG in terms of returning
better BLEU-4 value, but the impact is not so great on
generating correct patches for RATCHET.

VI. DISCUSSION

A. Qualitative Case Studies

We present one cases of patches generated by RATCHET
with high quality in Fig. 5, where the ”Buggy Function”
shows the buggy function (it is the input of related models)
and the related ground-truth patch, and ”CRP” shows the
closest retrieved patch identified by Lucene. ”DeepFix” and
”RATCHET ” denote the patches generated by themselves,
respectively.

Fig. 5 shows a patch excerpted from commit 809fb76 in
Wireshark. In the ground truth patch, an additional argu-
ment “pinfo” is inserted into the invocation of function
“fVendorIdentifier”. DeepFix predicts that this bug
should be fixed by adding an argument to the function, but
it could not accurately determine the correct function name
and arguments. Indeed, the generated patch is syntactically
similar (with a BLEU-4 value) to the ground-truth patch but
cannot fix the bug. On the contrary, RATCHET can determine
the function call and structure of the return statement by our

DrRepair dataset

Fig. 6: Impact of K’s values on RATCHET.

proposed retrieval augmented model. With the closest retrieval
patch (CRP) that provides the correct parameters for the patch,
RATCHET finally generates a correct patch for the bug that is
identical to the ground truth.

B. Selection of K’s Value for RATCHET

As mentioned in Section III-C, RATCHET generates k patch
candidates by using the top-k suspicious statements. The
number of patch candidates directly impacts the effectiveness
of fixing bugs [19]. And, the model performance might be
affected if the value of k is not large enough. Therefore, we
investigate the impact of different values of k on RATCHET.
Specifically, we apply different values ({1, 3, 5, 7, 9, 11}) of
k for RATCHET to assess its performance.

Fig. 6 presents the RAcc results of RATCHET setting with
different k values for two datasets. As the value of k increases,
the repair accuracy of RATCHET on RATCHET-DS increases
sharply before reaching a plateau of approximately 0.2 when
k’s value increases to 5. As the value of k increases from
5 to 7, the repair accuracy increases marginally, with an
increment of less than 1%. RATCHET presents a similar trend
on DrRepair dataset. Intuitively, more correct patches can be
captured within a large number of patch candidates. Therefore,
the value of k should be as high as possible. However, the
trade-off is the increased amount of plausible patches with
the higher k value, which hinders the validation of correct
patches [52] and impacts the efficiency of fixing bugs [19].
Therefore, the number of generated patch candidates should
be as small as possible without a sharp decrease in RAcc.
As illustrated in Fig. 4, most buggy functions have ∼20
statements. RATCHET-FL presents auspicious performance on
exposing bugs with the top-5 most suspicious statements,
hence, k = 5 is also a reasonable setting for fault localization.
To sum up, RATCHET is set with k = 5 in this study.

C. THREATS TO VALIDITY

Several internal threats lie in this work. First, we focus
on single-line bugs; although statistics from [62] state that
almost 33% of bugs represent a single statement, there is
large room to extend future works to more complex and
multiple position program repair. Another threat arises from
retrieving historical repair commits based on the context of



buggy at the semantic level. Irrelevant repair commits might
be retrieved, which can interfere with model training and
lead to the generation of incorrect patches. Furthermore, the
performance of neural models can vary significantly with
different hyperparameter settings. Finding the optimal settings
is often expensive and time-consuming. Although we conduct
a grid search to identify settings offering relatively better
performance, we cannot guarantee that the current settings are
the best.

One of the external threats lies in the evaluation of our
approach. Our approach has been evaluated solely on a vul-
nerability dataset in the C language. We have not explored its
generalization to vulnerability datasets in other programming
languages or CWEs like libraries. The current approach is
language-specific, employing features in the template-mining
module, which limits its direct application to other program-
ming languages. Future work will focus on adapting the
approach to be language-agnostic.

VII. RELATED WORKS

A. Fault Localization

In many automated program repair works [3], [4], [7], [8],
[11], [12], SBFL techniques are used to localize bugs and
errors in source codes. Ochiai [9] and Tarantula [10] are two
popular algorithms in computing suspicious scores for each
statement in the programs. GZoltar [24] is used for automatic
testing and fault localization in Java projects. However, they
rely on test cases for the computation of the suspicious score.
Some works employ information retrieval techniques to locate
faults. Their granularity ranges from buggy source files [54] to
buggy statements [25]. Locus [54] constructs two models using
code entity tokens and natural language tokens. By giving
different weights to the models, it learns the cosine similarity
between bug reports and statements. iFixR employs a TF-
IDF model to compute the similarity score between reports
and source code. Cosine similarity scores are used as the
suspicious score for ranking the suspicious statements. Recent
works have started to employ deep learning approaches in fault
localization, such as DrRepair [14], which uses bidirectional
LSTM and compiler messages to localize errors and generate
fixed statements for the error. Nevertheless, bug reports and
compiler messages are difficult to collect on a large scale
in real-world open-sourced projects. In comparison, by our
localization experiments, we have confirmed that the simple
bidirectional LSTM could have better performance than the
Transformer and we directly utilize LSTMs for localization.

B. Automated Program Repair

Automated program repair works can be grouped into three
categories: Search-based, Semantic-based, and Deep Learning-
based approaches. Earlier works involve a search-based ap-
proach to finding patches to fix programs. GenProg [7], [8]
employs genetic programming and mutation-based operations
to search for patches that fix C Programs. SemFix [11]
fixes the program by making changes to a single statement
and inferring constraints through the execution path. Some

works augmented the search space through prioritization and
context. Prophet [6] prioritizes patches through learning on
candidates patches, while CapGen [4] learns from the history
of the source code. Recent analysis [52], [63] has shown that
generate-and-validate approaches suffer from test cases over-
fitting and plausible patch overloading. SemFix [11] makes
changes to a single statement and infers constraints through
the execution path. FixMiner [64] learns from historical fix
templates to generate patches for existing bugs. More works
employ a deep learning approach in learning patches for buggy
programs. This can be attributed to the growing availability
of open-source codebases, practical programming languages,
and learning models. DLFix [3] employs graph-based learning
on Abstract Syntax Tree to generate fixes for Java Pro-
gram, while Deepfix [21], SequenceR [15], CoCoNut [16],
and CuRe [17] employ a sequence-to-sequence techniques in
generating patches. SynFix [65] repairs syntax errors through
learning on language models and compiler errors. One of the
limitations of these approaches is that they do not incorporate
fault localization in their model. The performance of the fault
localization greatly affects the performance of the generation
model. Although DrRepair [14] includes fault localization, it
relies on compiler messages for more contexts. Furthermore,
in our work, we propose an automated program repair model
based on the Transformer architecture and further incorporate
the retrieved code snippets to improve the accuracy of the
generated statement.

VIII. CONCLUSION

In this paper, we present our dual-model approach,
RATCHET, that consists of fault localization RATCHET-FL
and patch generation RATCHET-PG. RATCHET-FL localizes
fault in buggy function by capturing the semantic of the
buggy statements. Furthermore, RATCHET-FL does not require
additional software artifacts in localizing the fault in the source
code. RATCHET-PG is applied with our proposed retrieval-
augmented transformer, which allows generating better patches
for fixing bugs. The extensive experimental results confirm that
RATCHET can outperform baselines in both fault localization
and patch generation, and RATCHET is not so sensitive to
the fault localization setting. Future study consists of how to
incorporate more external information such as the compiler di-
agnostic feedback to further improve the system performance.
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